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1. Introduction and motivation

The AdS/CFT correspondence [1 – 3] can be generalized to a duality between conformal

field theories with defects and D-brane configurations in Anti de Sitter space (AdS) which

typically wrap AdS subspaces of the ambient AdS [4 – 7]. One important example of this

duality arises by considering Dp-branes which intersect Nc D3-branes in the large Nc limit.

At weak ’t Hooft coupling this system is described by a defect in the N = 4 SYM conformal

theory on the D3-branes. At strong coupling it is described by a geometry in which the

Dp-brane wraps a subspace of the AdS5 × S5 near-horizon geometry of the D3-branes.

Such systems and their generalizations to nonconformal theories play an important

role in recent attempts to provide a string theoretic construction of strong coupling dual

descriptions of QCD, but in such models the full structure of the correspondence has not

yet been worked out. One of the motivations for the current research was to work out the

mapping between states and operators in a defect AdS/CFT system with chiral fermions.

– 1 –



J
H
E
P
0
8
(
2
0
0
8
)
0
0
6

Intersections with chiral fermions occur in [8] which involves D4/D8-brane intersections.

The model considered here, involving D3/D7 intersections, is easier to analyze because

of the more direct connection to AdS/CFT. This example of AdS/dCFT was mentioned

in [9], but to our knowledge has not been studied in depth.

In a previous paper, [10], we studied the D3/D7 system from the field theory point of

view and found its structure to be quite rich. A key observation was that for gs 6= 0, there is

no decoupling limit of theD7-branes from gravity. This meant that the low energy effective

field theory on the D3-branes had to be considered in the supergravity background of the

D7-branes. In fact, consistent supergravity backgrounds involving D7-branes also require

the presence of O7-planes, and only exist for certain numbers and combinations of D7-

branes and O7-planes. Thus the Nc D3-branes wrapped R1,1 × Σ2, where Σ2 was either a

noncompact, asymptotically conical space or a two-sphere, and the D3/D7-O7 intersection

was extended along R1,1. The 1 + 1-dimensional defect hosted chiral fermions, originating

from the massless modes of 3-7 open strings. Additionally, however, in the compact Σ2

case, there were chiral zero-modes of the D3-brane fields that localized to the intersection.

We will briefly review some of these key results along with the general setup in section 2.

We would now like to study this system from the supergravity point of view — that

is, by replacing the D3-branes with the geometry they produce. In particular, we will need

to consider the fully backreacted supergravity solution for D7- and D3-branes intersecting

in 1+ 1 dimensions. We discuss this solution in section 3, and give special attention to the

analysis of preserved supersymmetries in appendix A. In the near horizon of theD3-branes,

the geometry is AdS3×w Σ2×S5, where Σ2 is warped over the AdS3 base. A key feature of

this geometry is that the warping breaks all conformal and superconformal symmetries that

would have been associated with the AdS factor. Correspondingly, the curved background

that the field theory lives on breaks all conformal symmetries and supersymmetries.1

This supergravity solution was recently written down in [11], where this system of

intersecting branes was also studied. That work considered the D3/D7 intersection as a

surface operator in the field theory and studied its dual description. We focus here on

other aspects of the correspondence.

The next two sections contain the main results of the paper. According to AdS/dCFT

lore, defect operators localized on the brane intersection in the field theory should be dual

to supergravity modes on the “probe” brane, coming from the massless excitations of open

strings. In our system the D7-branes are not probes; they produce their own backreaction

on the geometry. Nevertheless, we show in section 4 that when expanding the total action

Sbulk + SD7, where SD7 is the sum of DBI and WZ actions for the D7-brane, around the

background solution, the D7-brane action produces well-defined, finite couplings for open

string modes. The D7-branes lie on AdS3 × S5 slices of the total geometry. We then

perform a Kaluza-Klein reduction on the five-sphere and obtain the complete bosonic and

1The “probe limit” gs = 0 only restores conformal symmetry and supersymmetry if all 7-branes are

coincident [11]. We will be mostly interested in the case of compact Σ2, which involves 16 D7-branes and

4 O7-planes — ie. F-theory on K3. Even in the orientifold limit, where gs is constant and may be set to

zero everywhere, conformal symmetries are not restored, as the O7-planes can not be taken coincident, and

the transverse space is compact, Σ2 = T 2/Z2.

– 2 –



J
H
E
P
0
8
(
2
0
0
8
)
0
0
6

0 1 2 3 4 5 6 7 8 9

D7, O7 x x x x x x x x

D3 x x x x

Table 1: Brane orientations

fermionic spectrum of D7-brane open string excitations on AdS3.

These modes should be dual to operators on the field theory side that contain defect

fields, involve a single color contraction, and fall into primary multiplets of the supersymme-

try algebra. If conformal supersymmetry was present, these would be short, chiral primary

multiplets; since it is not, they are simply (long) multiplets of the ordinary supersymmetry

algebra. As such, there is no algebraic argument that protects the dimensions of these op-

erators from receiving corrections as one goes to strong ’t Hooft coupling. Nonetheless, the

mode-operator map that we propose combined with the AdS3/CFT2 mass-dimension rela-

tions imply that these operators are not renormalized. It would be interesting to investigate

this further from the field theory perspective.

In section 5 we address the supergravity dual signature of the D3-brane zero-modes

that localized to the intersection on the field theory side. These modes are chiral and

transform under the R-symmetry group of the field theory; in contrast, the modes of the

3-7 strings are singlets of the R-symmetry group. Hence, there is a global anomaly of the

R-symmetry current that localizes to the defect. In the original analysis in [3], the anomaly

of the R-symmetry current is reproduced in the supergravity description through a nonzero

dual gauge field variation that localizes to the boundary of AdS. We also find a term on the

supergravity side whose gauge variation localizes to the boundary of AdS3 and reproduces

the proper anomaly; however its origin is somewhat of a surprise.

We make some concluding remarks in section 6.

As pointed out in [11], the proposed gauge/gravity duality for this system is somewhat

novel. There is a lack of decoupling of the 7-brane geometry on both sides of the corre-

spondence. Hence, the field theory is not in flat Minkowski space, and the five-dimensional

gravity is not asymptotically AdS5. It is a correspondence between field theory in a super-

gravity background and string theory in a (different) supergravity background.

2. Review of setup and field theory results

In this section we briefly review some key results of [10]. The coordinate axes are taken

such that the branes span the directions marked in table 1.

This intersection preserves at most a Spin(1, 1)×Spin(2)×Spin(6) subgroup of the ten-

dimensional Lorentz group. However, for the brane configurations we will consider, not all

of the 7-branes are coincident, so the symmetry is reduced to Spin(1, 1)×Spin(6). The con-

figuration is 1/4 BPS, preserving eight of the IIB supercharges. From the point of view of

the 1+1-dimensional intersection these are chiral fermions and we choose them to be right-

handed. Our conventions will be that four supercharges transform in the (−1/2,−1/2, 4̄)

of Spin(1, 1) × Spin(2) × Spin(6), and their conjugates in the (−1/2, 1/2,4).
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2.1 The 7-brane background

For gs 6= 0, the backreaction of the 7-branes on the geometry must be taken into account.

Further, since the D3-branes are extended in the directions transverse to the D7-branes,

one is required to work with globally well-defined 7-brane supergravity solutions, and not

simply local ones. This leads one directly to the “stringy cosmic string” solutions of [12],

and their later interpretation in terms of D7-branes, O7-planes, and compactifications of

F-theory to eight dimensions [13 – 16]. We are interested in 7-brane solutions where the

asymptotic value of the axidilaton is tunable and may be taken small — these are the

solutions that can be embedded into a perturbative description of string theory.

The solutions involve a nontrivial metric and axidilaton. Let z = x2+ix3 parameterize

the space transverse to the 7-branes. Our conventions for the chirality of the preserved

supercharges dictate that τ = C0 + ie−φ ≡ τ1 + iτ2 should be an anti-holomorphic function

of z, or equivalently, τ̄ = τ̄ (z). The solution makes use of Klein’s modular j-function,

j : F0 → Ĉ, a one-to-one and onto mapping of the fundamental domain of PSL(2,Z) to

the Riemann sphere. Specifically,

τ̄(z) = j−1

(

P (z)

Q(z)

)

, (2.1)

where P (z), Q(z) are polynomials of the same degree, designed to make τ̄ regular at the

cusps τ̄ = i, e2πi/3 of F0. We denote the degree of Q by Nf , and the zeroes of Q by z
(n)
i∞ .

Near these points τ̄ → i
2π ln (z − z

(n)
i∞ ); they correspond to the location of 7-branes. In

order for P,Q to unwind the monodromy of j−1 around i, e2πi/3, we must have Nf divisible

by 6. The solution for the ten-dimensional metric is

ds2 = ηµνdx
µdxν + ea(z,z̄)dzdz̄ + δIJdy

IdyJ , where

ea(z,z̄) = τ2
η2(τ̄ (z))η̄2(τ(z̄))

∏Nf

n=1(z − z
(n)
i∞ )1/12(z̄ − z̄

(n)
i∞ )1/12

≡ τ2g(z)ḡ(z̄). (2.2)

The factors of (z− z(n)
i∞ ) in the denominator cancel the zeroes of the Dedekind eta function

at these points, so that the metric is everywhere nondegenerate. Near the 7-branes it

behaves as ln |z − z
(n)
i∞ |, thanks to the factor of τ2. As z → ∞, the warp factor behaves as

ea → 1/|z|Nf /6. Thus there is a deficit angle of δ = 2π
Nf

12 . The space is asymptotically

conical, cylindrical, or is a two-sphere for Nf = 6, 12, 24 respectively. These are the only

values Nf can take. If we view τ as the modular parameter of a torus fibred over the base

parameterized by z, z̄, then these are solutions of F-theory. In particular, the case where

the base in a two-sphere corresponds to F-theory on R1,7 ×K3.

For definiteness, let us now discuss the Nf = 24 case. Analogous statements to the

following apply in the other two cases. Though there are 24 7-branes, they can not all

simultaneously be taken as perturbative D7-branes — ie. 7-branes on which (p, q) = (1, 0)

strings end. Some 7-branes are immersed in regions where the string coupling, 1/τ2, is order

one. By applying an SL(2,Z) transformation one can make the string coupling small, but

such a transformation acts nontrivially on the (p, q) charges of the brane. There is no

globally perturbative description; rather, perturbative descriptions are patched together

– 4 –
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via SL(2,Z) transformations. Though there is no globally perturbative description, one

can make the regions of strong coupling arbitrarily small. This is best understood by going

to a special limit and considering small deformations around that limit.

The orientifold limit corresponds to taking certain combinations of (p, q) 7-branes

coincident such that the axidilaton is everywhere constant. For the limit we are interested

in, one takes the z
(n)
i∞ to be equal in sets of six. Each of the resulting four points is

interpreted as the location of four D7-branes coincident with an O7−-plane, such that the

gauge group on their worldvolume is SO(8). The small deformations away from this limit

consist of pulling the four D7-branes off of the O7-plane (in any of the four sets). The

O7-plane splits nonperturbatively into two SL(2,Z) transformed (p, q) 7-branes, which are

constrained to remain close to each other. While the string coupling becomes order one in

the vicinity of the (p, q) 7-branes, the four “satellite” D7-branes act effectively as shields,

keeping the string coupling small away from each system of six 7-branes. By encircling each

cloud of strong coupling while remaining in a perturbative description, we can measure its

charge and monodromy to be that of an O7−-plane, and therefore effectively treat it as

such. The SL(2,Z) monodromy around an O7-plane is S2 = −1, where T, S are the usual

generators. This has important consequences for the open strings on the D3-branes.

This system should be contrasted with studies of the AdS/CFT correspondence where

flavor 7-branes are oriented in parallel to the D3-branes. In the parallel case the 7-branes

can be treated as probes [17, 18] or their backreaction can be taken into account [19, 20].

The point is that in these situations one only requires a local description of the 7-brane

background. Therefore the number of 7-branes that one may consider is not restricted as

it is here.

2.2 Field theory symmetries and low energy effective action

After expanding around the background above and taking the Maldacena α′ → 0 low energy

limit, the bulk and 7-brane fluctuations decouple from the system, leaving the effective low

energy theory on the D3-branes and the intersection.

The field content on the D3-branes is that of N = 4 SYM, (though the low energy

theory itself is not as we will explain). We denote it as

(M ij , ψi, Am). (2.3)

Here the superscript i, j = 1, . . . , 4 is an index in the 4 of SU(4)R while subscript i, j is

an index in the 4̄. The three complex scalars have been packaged into an antisymmetric

matrix M ij = −M ji that additionally has a reality constraint (M ij)† = 1
2ǫijklM

kl ≡ Mij .

The fields are in the adjoint, but the issue of the gauge group is subtle. While locally,

away from the D3/O7 intersection it is U(Nc), the presence of the O7-planes and their

SL(2,Z) monodromy prevent the extension of this to a global symmetry group. The action

of S2 on the open strings can be identified with worldsheet orientation reversal Ω. As this

operation flips Chan-Paton labels, it is a generalized charge conjugation. Thus one can

identify the D3/O7 intersections as Alice strings [21 – 23]. Only an O(Nc) subgroup of the

local symmetry group is globally well-defined. We use O(Nc) representations to classify

field content, and the zero-modes to be mentioned below only take values in O(Nc).
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The low energy effective action on the D3-brane, which can be derived from the DBI

and WZ actions [24, 25], has the look of an N = 4 action, but in the curved backgroundR1,1 × Σ2 and with a spacetime varying Yang-Mills coupling and theta angle:

S3-3 = Sbos.
3-3 + Sferm.

3-3 , (2.4)

Sbos.
3-3 = − 1

2π

∫

d4x
√−gtr

(

1

4
τ2FmnF

mn +
1

8
τ1ǫ

mnpqFmnFpq

+
1

2
DmMijDmM ij − 1

4τ2
[Mij ,Mkl][M

ij ,Mkl]

)

(2.5)

Sferm.
3-3 =

i

2π

∫

d4x
√−gtr

{

τ2

(

ψ̄iγ
m(Dm +

i

2
Qm)Lψi

)

+
√
τ2

(

(Lψ)i[(Lψ)j ,Mij ] + (ψ̄R)i[(ψ̄R)j ,M
ij ]

)}

. (2.6)

We momentarily employ spacetime indices m,n such that xm = (xµ, z, z̄). The derivatives

Dm are spacetime and gauge covariant. Qm is a background U(1) connection constructed

from the axidilaton:

Qm =
∂m(τ + τ̄)

2i(τ − τ̄)
. (2.7)

This is the same connection that appears in the IIB supergravity equations of motion. It

transforms as a gauge field under SL(2,Z) transformations.

The coupling of the fermions to the background U(1) connection Qm has important

consequences. One can show via an index calculation that, in the Nf = 24 case, the

fermions have chiral zero-modes that localize to the intersection. There is a left-handed

zero-mode that transforms in the antisymmetric tensor representation of O(Nc) and a right-

handed zero-mode that transforms in the symmetric tensor representation. We denote these

zero-modes ξL, ξR respectively. The rest of the D3-brane fields also have (nonchiral) zero-

modes. Their existence can be argued by going to the orientifold limit, where the brane

configuration is T-dual to Nc D1-strings in Type I. However, they can also be explicitly

constructed away from the orientifold limit [10].

A standard exercise in string quantization shows that the massless modes of the 3-7

strings on the D3/D7 intersection consist of a single Weyl fermion in the bifundamental

of O(Nc) ×Gf , where Gf in the gauge group on the D7-brane worldvolume. Gf could be

SO(8), U(4), or broken further, depending on the 7-brane locations. This fermion, which

we denote qL, is a singlet under supersymmetry. We take it to be left-handed, so that

all eight preserved supercharges are right-handed. In two dimensions our gamma matrix

conventions are γ0
(2) = iσ2, γ1

(2) = σ1. Symmetries dictate the form of the low energy action:

S3-7 =
1

2π

∫

I
d2xq†L(i∂− −A−)qL , (2.8)

where ∂− = 1
2(∂0 − ∂1) etc. Indices in O(Nc) × Gf are being suppressed. There is a

coupling to the D7-brane gauge field but in the α′ → 0 limit this field becomes massive

and Gf becomes a global symmetry. One can explicitly check that this action is invariant

– 6 –
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SO(1, 1) × ŜO(2) × SO(6) O(Nc) ×Gf

ξi
L (1

2 ,
1
2 ,4) (Nc(Nc−1)

2
,1)

ξi
R (−1

2 ,−1
2 ,4) (Nc(Nc+1)

2
,1)

qL (1
2 , 0,1) (Nc, fund.)

QRi, Q
†i
R (−1

2 ,−1
2 , 4̄), (−1

2 ,
1
2 ,4) (1,1)

Table 2: Transformation properties of chiral intersection modes and preserved supercharges. We

specify the charges of the fields under the action of the Abelian groups and the dimensions of their

representations for non-Abelian groups. The hat over SO(2) is a reminder that it is not actually a

symmetry of the background, though it is still useful to consider the charges of the fields under its

action.

under the half of the N = 4 supersymmetries that are right-handed on the two-dimensional

intersection.

The defect action given here is very simple in comparison to those studied in refer-

ences [6, 7], which included couplings of defect fields to normal derivatives of bulk scalars,

for example. The difference is that here the defect field content is purely fermionic and

inert under supersymmetry. On dimensional grounds the only other (marginal) defect-bulk

coupling one could write down is of the form q†LM
ijqL, but this respects neither supersym-

metry nor R-symmetry.

In table 2 we summarize the transformation properties of the chiral modes on the

intersection and the supercharges under the various symmetry groups.

3. Supergravity solution

The effective field theory of the last section is an appropriate description of the system when

the ’t Hooft coupling is small, λ ≡ gsNc ≪ 1. Here, gs is related to the asymptotic value

of the dilaton, 1/gs = limz→∞ τ2. In the opposite regime, λ≫ 1, one must account for the

the backreaction of the D3-branes on the geometry. Thus we require the full supergravity

solution corresponding to the system of intersecting D3- and 7-branes.

This solution was recently written down in [11] and it is easily obtained from the

“harmonic function rule” described in [26]. We continue to use coordinates (xµ, z, z̄),

µ = 0, 1, for directions tangent to the D3-branes, and we now adopt spherical coordinates

(r, θα), α = 1, . . . , 5, for directions transverse to the the D3-branes. Then in Einstein frame

the solution is given by

ds2 = f(r)−1/2[ηµνdx
µdxν + λ2ea(z,z̄)dzdz̄] + f(r)1/2[dr2 + r2dΩ2

5] (3.1)

τ = τ(z̄) (3.2)

G(5) = (1 − ∗)4R4ǫS5 , (3.3)

where

f(r) = 1 +
R4

r4
(3.4)
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is the harmonic function from the D3-brane solution, ǫS5 is the volume form on the unit

5-sphere, and τ, ea are given by the GSVY solution [12], equations (2.1),(2.2) above. One

can easily generalize f(r) to the multi-centered solutions describing separated D3-branes;

we will restrict ourselves to the simplest case of coincident D3-branes here. We use G(p+2)

to denote R-R field strengths. The radius2 R is given by

R4 = 4πα′2Nc , (3.5)

and λ is a free parameter that controls the size of the space, Σ2, transverse to the 7-branes.

To be consistent with the conventions in the field theory analysis of the previous section,

τ is again antiholomorpic. Furthermore, since the ten-dimensional chirality of the IIB

supercharges is taken to be right-handed, the five-form is taken to be anti-self-dual.

We are interested in doing AdS/CFT, so let us go to the near horizon of the D3-branes,

letting f(r) → R4/r4. We have

ds2 → r2

R2
ηµνdx

µdxν +
R2

r2
dr2 +

r2

R2
λ2eadzdz̄ +R2dΩ2

5

= ds2AdS3
+
r2

R2
ds2Σ2 +R2dΩ2

5 . (3.6)

Henceforth we will use the notation xm = (xµ, r) for the AdS3 coordinates. While the

metric has an AdS3 factor, it does not possess the full set of AdS isometries. This is due

to the warp factor in front of the Σ2 term, which destroys the conformal symmetries. The

full bosonic isometry group is ISO(1, 1) × SO(6). Similarly, an analysis of the preserved

supersymmetries of the background, given in appendix A, shows that the eight supersym-

metries of the global solution remain the only supersymmetries in the near-horizon region.

There is no doubling of the supersymmetry due to near-horizon conformal enhancement.

These statements match well with our expectations from the dual field theory. The

global bosonic symmetry of the effective theory on the D3-branes is ISO(1, 1) × SO(6).

The preserved supersymmetries match, as we show in the appendix. Finally, conformal

symmetries and conformal supersymmetries are also broken in the field theory, due to the

7-brane geometry.

The first serious step in establishing the correspondence is to exhibit the mode-operator

map. We will restrict ourselves to the perturbative, Nc → ∞, sector of the map — the

relation between supergravity fluctuations about the background (3.6) and single color-

contraction operators falling into primary multiplets of the supersymmetry algebra. This

piece of the map can be further divided into two subsectors, defect and bulk. In the next

section we analyze the defect mode-operator map.

4. Defect mode-operator map

Applying the standard AdS/dCFT prescription to our system, field theory operators local-

ized on the D3/D7 intersection, constructed using the 3-7 fermions qL, should be dual to

2Note that since we have a spacetime varying dilaton, and we will be mostly considering the case where

eadzdz̄ describes a compact space, we do not bother pulling out the “asymptotic” value: eΦ = gse
Φ−Φ0 .

Hence there will be no factor of gs in front of the Hilbert action, and this why it does not appear in the

formula for R4.

– 8 –



J
H
E
P
0
8
(
2
0
0
8
)
0
0
6

open string fluctuations on the D7-branes embedded in the near-horizon geometry (3.6).

Note that, while we have been careful to account for the backreaction of the 7-branes on

the geometry, we are not replacing the 7-branes by this geometry.

This is an important point and deserves further comment. Indeed, one should never

“replace” a brane by the geometry it produces. When one analyzes the supergravity side

of AdSp+2/CFTp+1, for instance, one is expanding in fluctuations around a background

solution. The solution is an extremum of SII + Sstatic
Dp , where Sstatic

Dp contains source terms

for the metric, dilaton, and R-R form, Cp+1, on a static brane. To be consistent then, one

must expand SII in closed string fluctuations around the background geometry and Sstatic
Dp

in open string fluctuations around the static brane. However, for p ≤ 6, the components of

the Einstein metric in directions tangent to the brane involve a function, f(r), of the radial

distance from the brane, that vanishes at the source as r → 0. Thus the induced metric

on the brane degenerates and open string fluctuations are removed from the spectrum.

The D7-brane is quite different and special in this respect. The components of the

metric tangent to the brane do not depend on the transverse coordinates and are completely

well defined as one goes to the brane. The following analysis shows that there are finite

energy open string fluctuations on the D7-branes in the background (3.6).

4.1 D7-brane fluctuations

We begin with an expansion of the DBI and WZ actions in fluctuations, keeping lowest

order in α′. The induced metric on theD7-brane worldvolume is that of AdS3×S5. We then

perform a Kaluza-Klein reduction on the five-sphere to obtain the mass spectrum on AdS3.

For the bosonic D7-brane DBI and WZ actions, we follow the conventions of [24]. We

choose the embedding coordinates to be the spacetime coordinates of AdS3 × S5: ξa =

(xm, θα). Labels a, b, . . . run over spacetime directions tangent to the brane. Underlined

indices a, b, will denote corresponding tangent space directions. Labels i, j, . . . run over the

perpendicular directions: xi = (x2, x3) or (z, z̄). The bosonic D7-brane fields are the gauge

field Aa and the fluctuation scalars Φi, which transform in the adjoint of the gauge group.

The gauge group could be SO(8) in the orientifold limit, U(4) away from the orientifold, or

broken further. The expansion of the DBI action in open and closed string fluctuations is

straightforward. We parameterize the fluctuations of the metric and dilaton around their

background values as GMN = G̃MN + hMN , φ = φ̃ + δφ; the background value of the

NS-NS two-form BMN is of course zero. We will denote the background induced metric on

the brane as gab . In Einstein frame we find

Sbos.
DBI = −µD7

∫

d8ξ
√−geφ̃tr

{

1 +

(

δφ+
1

2
ha

a +
1

2
(δφ +

1

2
ha

a)
2

−1

4
habhab +

1

4
e−φ̃BabBab

)

+

+(2πα′)

(

e−φ̃/2(hai +Bai)DaΦi +
1

2
e−φ̃BabF

ab

)

+

+(2πα′)2
(

1

2
e−φ̃G̃ijDaΦiDaΦj+

1

4
e−φ̃FabF

ab

)}

+O(α′). (4.1)
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There are three sets of terms. The first set contains closed string modes only, the

second set contains couplings between open and closed string modes, and the third set

gives the open string couplings. The terms displayed are those which, after canonically

normalizing all fluctuations, survive the α′ → 0 limit. We will not consider the closed

string couplings further, except to note that the one-point couplings must be cancelled

by one-point couplings coming from the bulk supergravity action — we are expanding

around a solution of the equations of motion. As for the couplings between bulk and brane

fields, we note that only the U(1) brane fields survive the trace. These couplings can have

interesting consequences, but they will not affect the mass spectrum of open string modes.

We will only be interested in the third set of terms.

In order to determine the correct canonical normalization of the brane fields, we must

first rescale the near-horizon metric appropriately. The AdS/CFT correspondence requires

that we zoom in on the D3-branes, r → 0, while taking α′ → 0 in such a way that r/α′

remains fixed. We define a new coordinate v = r/R2, such that

R2

r2
dr2 +

r2

R2
ηµνdx

µdxν = R2

(

dv2

v2
+ v2ηµνdx

µdxν

)

, (4.2)

and we write G̃MN = R2ḠMN . After changing variables from r to v, ḡab is the metric

on AdS3 × S5 with unit radius. Now we replace G̃ in favor of Ḡ. One has
√−gFabF

ab =

R4√−ḡFabF
ab for instance, where on the right the indices are understood to be raised with

the metric ḡab. Then the relevant terms from the DBI action are

Sbos.
DBI ⊃ − Nc

8π4

∫

d8ξ
√−ḡtr

{

1

4
FabF

ab +
1

2
ḠijDaΦiDaΦj

}

, (4.3)

where we have used (3.5) and µD7 = (2π)−7α′−4. The fact that all factors of α′ cancel

indicates that the D7-brane fluctuations are of finite energy in the Maldacena limit.

When the space transverse to the brane is curved, as is the case here, it is more natural

to work with fluctuation scalars whose index is valued in the tangent space of the normal

bundle. Using the explicit form of the transverse metric and vielbeins, one finds

Ḡij∂aΦ
i∂aΦj = 2Ḡzz̄∂a(Ē

z
z Φz)∂a(Ē

z̄
z̄ Φz̄)

= 2ηzz̄

(

∂aΦ
z∂aΦz̄ − v∂v(Φ

zΦz̄) + ΦzΦz̄

)

. (4.4)

When plugged back into the action, the second term can be integrated by parts. Observe

that ∂v(v
√−ḡ) = ∂v(v

2√gS5) = 2
√−ḡ. Hence this term will add to the third term.

Defining Φ ≡ Φz, and so Φ∗ = Φz̄, we obtain

Sbos.
DBI ⊃ − Nc

8π4

∫

d8ξ
√−ḡtr

{

1

4
fabf

ab +
1

2
∂aΦ∂

aΦ∗ +
3

2
|Φ|2 + int.

}

, (4.5)

where fab is the O(A) part of Fab. In exchange for putting the kinetic term in standard

form, we pick up a mass term for Φ. This will turn out be crucial for obtaining integer
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conformal dimensions from the AdS3/CFT2 mass-dimension relations. Once we canonically

normalize according to

(Aa,Φ) =
23/2π2

√
Nc

(A′
a,Φ

′), (4.6)

the interaction terms are down by 1/
√
Nc or 1/Nc.

The expansion of the bosonic WZ action to lowest order in α′ also contains couplings

of all three types: closed-closed, open-closed, and open-open string couplings. We will not

write out the full expression. Fortunately, there is only one term of the last type. It is

given by

Sbos.
WZ ⊃ −µD7

(2πα′)2

2

∫

G̃5 ∧ ω3(A), (4.7)

where dω3(A) = tr(F 2), and we evaluate the five-form field strength on its background

value (3.3), with all five legs taken along S5. Plugging this result in and replacing A with

the canonically normalized gauge field brings us to the simple result

Sbos.
WZ ⊃ −2

∫

ǫS5 ∧
(

A′ ∧ dA′ +O

(

1√
Nc

))

. (4.8)

The fermionicDp-brane actions in general bosonic supergravity backgrounds have been

worked out very explicitly to quadratic order in fermions in [25]. They restricted attention

to the Abelian case, but to quadratic order in fluctuations, which is all we will need, one can

trivially generalize to the non-Abelian case by adding a trace. Let us denote the fermion

as Ψ. It is a sixteen component spinor, but satisfies a Weyl constraint. We take it to be

left-handed: L(8)Ψ = Ψ. Then, after some work, one reduces the general formulae of [25]

to the following action, quadratic in fluctuations:

Sferm. =
Nc

8π4

∫

d8ξ
√−ḡtrΨ̄

(

iγa∇a +
1

2

(

iγ01v − γθ1···θ5
)

)

L(8)Ψ . (4.9)

The details of this calculation are presented in appendix B. The factor out front is the

same as we obtained for the bosonic action; this is required by supersymmetry, as we also

discuss in the appendix. ∇a is the covariant derivative on AdS3 ×S5 with unit radius, and

the γa are SO(1, 7) gamma matrices. The origin of the mass-like term is the coupling of

the fermion to the background five-form field strength.

For the purpose of determining the spectrum of open string modes, the trace in all of

these formulae may simply be replaced by a sum over an index valued in the adjoint of the

7-brane gauge group. Hence, in the case of SO(8) for instance, there are 8 · 7/2 copies of

each field. This index will always be suppressed in the following.

4.2 K-K reduction on S5

We now expand the scalar, gauge field, and fermion in complete sets of appropriate spherical

harmonics on S5, and determine the resulting spectrum on AdS3. We begin with the scalar.

Dropping the primes from the normalization in the last section, the quadratic action is

S[Φ] = −
∫

d8ξ
√−ḡ

(

1

2
∂aΦ∂

aΦ∗ +
3

2
|Φ|2

)

, (4.10)
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leading to the equation of motion

∇a∂
aΦ − 3Φ = 0 . (4.11)

Now expand Φ in a complete set of scalar spherical harmonics on S5:

Φ =
∑

I1

φI1(xm)Y I1(θα). (4.12)

We follow the notation and conventions of [27]. I1 = {k, li,mi} with k ≥ 0, and these

harmonics satisfy ∆S5Y I1 = −k(k + 4)Y I1 . The equation of motion for each mode on

AdS3 is then

(

∇m∂
m − (k2 + 4k + 3)

)

φI1 = 0 , k ≥ 0 . (4.13)

This is the equation for a scalar on AdS3 with mass squared m2 = k2 + 4k + 3.

Next we consider the gauge field, with quadratic action

S[A] = −
∫

d8ξ
√−ḡ1

4
fabf

ab − 2

∫

ǫS5 ∧A ∧ dA . (4.14)

Decompose the gauge field into AdS3 and S5 components, Aa = (Am, Aα). Then

fabf
ab = fmnf

mn + fαβf
αβ + 2fmαf

mα , and (4.15)

fmαf
mα = ∂mAα∂

mAα + ∂αAm∂
αAm − 2∂αAm∂

mAα . (4.16)

We make the gauge choice ∇αA
α = 0. Then the last term in fmαf

mα vanishes after

integration by parts. Noting that the Chern-Simons term only involves Am, the action

separates as

S[A] = −
∫

d8ξ
√−ḡ

(

1

4
fmnf

mn +
1

2
∂αAm∂

αAm

)

− 2

∫

ǫS5 ∧A ∧ dA+

−
∫

d8ξ
√−ḡ

(

1

2
∂mAα∂

mAα +
1

4
fαβf

αβ

)

. (4.17)

Let us deal with the S5 gauge field first. Given our gauge choice, the equation of

motion is

∇m∂
mAα + MaxS5Aα = 0 , (4.18)

where MaxAα = (∇γ∇γδα
β −Rα

β)Aβ . We expand Aα in vector spherical harmonics,

Aα =
∑

I5

aI5(x)Y I5
α (θ), (4.19)

which have the properties ∇αY I5
α = 0 and

MaxY I5
α = −(k + 1)(k + 3)Y I5

α , for k ≥ 1 . (4.20)
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Thus we get another tower of massive scalars on AdS3 obeying the equations
(

∇m∂
m − (k + 1)(k + 3)

)

aI5 = 0 , k ≥ 1 . (4.21)

Now consider the AdS3 gauge field. In this case we expand in spherical harmonics at

the level of the action. Let

Am =
∑

I1

aI1
m(x)Y I1(θ) ⇒ fmn =

∑

I1

f I1
mnY

I1 . (4.22)

Using orthonormality of the harmonics, we do the integral over the five-sphere and are left

with

S = −
∑

I1

∫

d3x
√−gAdS

(

1

4
f I1

mnf
I1mn +

1

2
m2

I1a
I1
ma

I1m + 2ǫmnpaI1
m∂na

I1
p

)

, (4.23)

where m2
I1

= k(k + 4), for k ≥ 0, and ǫ01v = (−gAdS)−1/2. This is an example of a 3-

dimensional Proca-Chern-Simons theory [28 – 30]. The second term is a standard Proca

mass term for the gauge field and the last term is a “topological mass” term. The propa-

gator for the photon of this theory has two different poles, both physical. If we denote the

coefficient in front of the Chern-Simons term by κ/2, so that in our case κ = 4, then these

poles are located at

m± =
1

2

(√

κ2 + 4m2
I1
± |κ|

)

. (4.24)

Thus we find

m± =
1

2

(

√

16 + 4k(k + 4) ± 4
)

=

{

k + 4

k
, k ≥ 0 . (4.25)

At each of these poles there is only one physical degree of freedom; the polarization vector

has one free component. In terms of the asymptotic Minkowski boundary, the excitations

are left- or right-moving. Let a±µ denote the boundary components of the modes correspond-

ing to m±. Then, converting the results of [30] to Minkowski signature AdS3, one finds

a±µ = ∓εµνra±ν , where ε01r = 1. It follows that a+
µ is right-moving, while a−µ is left-moving.

Finally, let us consider the D7-brane fermion action, given by

S[Ψ] =

∫

d8ξ
√−ḡtrΨ̄

(

iγa∇a +
1

2

(

iγ01v − γθ1···θ5
)

)

L(8)Ψ , (4.26)

after canonically normalizing. We decompose the SO(1, 7) gamma matrices according to

SO(1, 7) → SO(1, 2) × SO(5) via the following:

γm = σ1 ⊗ τm ⊗ 14 , m = 0, 1, v , (4.27)

γθα

= −σ2 ⊗ 12 ⊗ ρα , α = 1, . . . , 5 , (4.28)

where

{τm, τn} = 2ηmn , {ρα, ρβ} = δαβ . (4.29)
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We will take τ0 = iσ2, τ1 = σ1, and τv = σ3. Further, we choose ρ5 = −ρ1 · · · ρ4, so that
∏

ρα = −1. With these conventions the SO(1, 7) “γ5” is given by

γ̄ = i
∏

γa = iσ1σ2 ⊗ 12 ⊗ 14 =

(

−18 0

0 18

)

. (4.30)

Therefore we write

L(8)Ψ =

(

0

ψ

)

, (4.31)

where ψ is an eight-component complex spinor. In this basis we also find

1

2

(

iγ01v − γθ1···θ5
)

=
1

2
(iσ1 − σ2) ⊗ 18 =

(

0 i18

0 0

)

. (4.32)

Lastly,

iγa∇a = iσ1 ⊗ τm∇m ⊗ 14 − iσ2 ⊗ 12 ⊗ ρα∇α

=

(

0 i /∇x ⊗ 14 − 12 ⊗ /∇θ

i /∇x ⊗ 14 + 12 ⊗ /∇θ 0

)

, (4.33)

where we are using the shorthand /∇x = τm∇m and /∇θ = ρα∇α. Thus the equation of

motion that follows from the action (4.26) is

(i /∇x ⊗ 14 − 12 ⊗ /∇θ + i18)ψ = 0 . (4.34)

We expand ψ in a complete set of spinor spherical harmonics,

ψ =
∑

IL

λIL(x) ⊗ ΘIL(θ), (4.35)

with IL = (±, k), k ≥ 0, and satisying

/∇θΘ
IL = mIL

ΘIL , with m±,k = ∓i
(

k +
5

2

)

. (4.36)

Note that Θ±,k can be expressed in terms of the kth scalar spherical harmonic and the

Killing spinor η± on S5. The Killing spinors satisfy ∇αη
±± i

2ραη
± = 0, and are related by

conjugation. Plugging this expansion into the equation of motion, we obtain the following

set of Dirac equations on AdS3:

( /∇x + m̃IL
)λIL = 0 , with m̃±,k =

[

±
(

k +
5

2

)

+ 1

]

, k ≥ 0 . (4.37)

The sign of the mass in this equation has important consequences for the asymptotic be-

havior of the spinor [31, 32]. One can decompose the spinor according to λ = λL + λR,

where λL,R are eigenvectors of τv: τvλL = λL and τvλR = −λR. On the two-dimensional
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Mode mass (squared) SU(4) Dynkin labels

a
(k)
− , k ≥ 0 k2 (0, k, 0)

λ
(−,k)
L , k ≥ 0 −(k + 3/2) (0, k, 1)

φ(k), k ≥ 0 k2 + 4k + 3 (0, k, 0)

a(k), k ≥ 1 k2 + 4k + 3 (1, k − 1, 1)

λ
(+,k)
R , k ≥ 0 (k + 7/2) (1, k, 0)

a
(k)
+ , k ≥ 0 (k + 4)2 (0, k, 0)

Table 3: The spectrum of D7-brane open string modes on AdS3. The φ are modes of the complex

transverse fluctuation scalar, the a± are modes of the AdS3 gauge field, the a come from the S5

gauge field, and the λ from the D7-brane fermion. We give the mass-squared in the case of bosons

and the mass in the case of fermions. Note that there are dimGf copies of each field on a given set

of coincident 7-branes, where Gf is the corresponding gauge group.

boundary τv has the interpretation of the chirality operator. In order for λ to scale appro-

priately to some boundary data λ∞, in accordance with the AdS/CFT prescription, one

of the λ∞L,R must be set to zero. The sign of the mass determines which one. For m > 0

the boundary data is right-handed, while for m < 0 it is left-handed. In summary, we have

the following towers of fermionic modes:

λ
(+,k)
R , m̃+,k = 7

2 ,
9
2 , . . .

λ
(−,k)
L , m̃−,k = −3

2 ,−5
2 , . . .

. (4.38)

As we go to the boundary, each of these becomes a complex Weyl fermion of the indicated

chirality.

This completes the K-K reduction of the D7-brane open string modes. The results are

summarized in table 3. Additionally we give the SU(4) representation in which each mode

transforms. These can be obtained by transcribing the appropriate SO(6) representations

which, in turn, are discussed in [33]. For example, the kth scalar spherical harmonic

transforms in the symmetric product of k SO(6) vectors. A vector of SO(6) corresponds to

an antisymmetric product of two fundamentals in SU(4); the Dynkin label would be (0, 1, 0).

Thus the kth scalar spherical harmonic transforms in the (0, k, 0) of SU(4). The k = 1 vector

spherical harmonic transforms in the antisymmetric product of two SO(6) vectors. This

corresponds to (1, 0, 1) in SU(4). The kth vector spherical harmonic transforms in the

(1, k− 1, 1). The Killing spinors η± transform in the fundamental and anti-fundamental of

SU(4). Hence the Θ±,k transform in the (1, k, 0) and (0, k, 1).

4.3 The defect operators and the matching

The open string modes discussed above should be dual to defect operators localized on

the D3/D7 intersection in the field theory. These operators must include the defect 3-7

fermion, qL, and may include D3-brane fields as well, evaluated on the intersection.

In the usual correspondence, gauge invariance dictates that operators must be products

of traces of adjoint valued fields. The trace is the only SU(Nc) invariant when one has only

adjoint valued fields to work with. The qL, on the other hand, are in the fundamental

– 15 –



J
H
E
P
0
8
(
2
0
0
8
)
0
0
6

of O(Nc). This gives us a second type of invariant to work with: q†Lϕ
aT aqL. Here ϕa

is any adjoint valued field (or product of fields), and T a are the generators of O(Nc) in

the fundamental representation. In the usual correspondence, the ’t Hooft large Nc limit

of correlation functions tells one that multiple trace operators are suppressed by powers

of 1/Nc from single trace operators. Similarly, the ’t Hooft analysis of the case with

fundamental fields allows one to conclude that multiple q-contractions are suppressed by

powers of 1/
√
Nc from single ones.

In the case of coincident 7-branes, the corresponding gauge group, Gf , becomes a

global symmetry group of the field theory in the limit we are considering. qL is in the

fundamental of Gf . Thus, the type of operators discussed above can also carry an index in

the adjoint of Gf , OA = q†LT
aAϕaqL, where now T aA are generators of O(Nc) ×Gf . The

same index is carried by the open string supergravity modes on the coincident 7-branes.

They match in the obvious way and will henceforth be suppressed.

Supergravity modes should correspond to primaries of the supersymmetry algebra.

The multiplets are filled out by acting on a lowest weight operator with the preserved su-

percharges. In direct analogy with the standard correspondence, we claim the the complete

set of defect (single q-contraction) lowest weight operators is

O(n) ≡ q†LM
{I1 · · ·M In}qL , n = 0, 1, 2, . . . . (4.39)

Here I is an index in the 6 of SU(4)R and M I are the D3-brane scalars, related to the M ij

appearing in the effective action (2.5) through SU(4) Clebsch-Gordan coefficients for 4 ×
4 → 6. The curly brackets indicate the totally traceless symmetric product. If we had su-

perconformal symmetry, these would be (defect) chiral primary operators, in analogy with

the operators considered in [6]. Under the preserved subalgebra of ordinary supersymmetry,

the multiplets built on O(n) by acting with supercharges simply become long multiplets.

Now we need to determine all of the combinations of preserved supercharges that can

act on O(n) without annihilating it or producing a descendant. The qL are singlets under

the preserved supersymmetry, so the supercharges act only on the D3-brane fields. Thus

the situation is very similar to the standard AdS5-N = 4 SYM correspondence, except that

we only have half of the sixteen N = 4 supercharges to work with. As was pointed out

in [10], the supercharges that leave the 3-7 string action (2.8) invariant are Q2j , Q̄
j

2̇
, in the

standard d = 4 Wess and Bagger notation. Their anti-commutator is {Q2j , Q̄
k
2̇
} = 2P−δk

j ,

the right-moving momentum along the intersection. Since the preserved Q all have the

same value of the SO(1, 3) Weyl index, from the N = 4 point of view, one can only

consider products of Q’s symmetrized on this index. This is the principle restriction. In

the following we simply denote Q2j ≡ Qj and Q̄j

2̇
≡ Q†j.

The operator O(n) clearly transforms in the (0, n, 0) of SU(4). Acting with one super-

charge we can have QjO(n) or Q†jO(n) transforming in the (1, n − 1, 0) and (0, n − 1, 1)

respectively. Acting with two supercharges, there are three possibilities. QiQjO(n) gives a

complex field in the (0, n−1, 0) andQ†iQ†jO(n) its conjugate. On the other handQiQ
†jO(n)

gives a real field in the (1, n− 2, 1). Acting with three supercharges gives two possibilities.

QiQ
†jQ†kO(n) is in the (1, n− 2, 0), and Q†iQjQkO(n) is in the (0, n− 2, 1). A product of

three Q’s or their conjugates must annihilate the operator. Finally, with four supercharges
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Operator (∆L,∆R) SU(4) Dynkin labels

O(n) (1 + n/2, n/2) (0, n, 0)

n ≥ 1

QiO(n) (1 + n/2, 1/2 + n/2) (1, n − 1, 0)

Q†iO(n) (1 + n/2, 1/2 + n/2) (0, n − 1, 1)

QiQjO(n), Q†iQ†jO(n) (1 + n/2, 1 + n/2) (0, n − 1, 0)

n ≥ 2

QiQ
†jO(n), (1 + n/2, 1 + n/2) (1, n − 2, 1)

QiQ
†jQ†kO(n), (1 + n/2, 3/2 + n/2) (1, n − 2, 0)

Q†iQjQkO(n), (1 + n/2, 3/2 + n/2) (0, n − 2, 1)

QiQjQ
†kQ†lO(n), (1 + n/2, 2 + n/2) (0, n − 2, 0)

Table 4: Defect primary multiplets.

there is one possibility: QiQjQ
†kQ†lO(n) is in the (0, n − 2, 0) of SU(4)R. Note that the

n = 0, 1 multiplets are short.

In table 4 we summarize these results. We also give the (classical) left and right

weights of the operators, from the 1 + 1-dimensional point of view. Note that qL, q
†
L each

have weight (∆L,∆R) = (1/2, 0), while each supercharge comes with weight (0, 1/2). The

1 + 3-dimensional bulk scalars are nonchiral and have total weight 1; thus they contribute

(1/2, 1/2) each. Since these are long multiplets of the preserved supersymmetry algebra,

there is no algebraic argument that protects the classical operator dimensions ∆ = ∆L+∆R

from being corrected as we go to strong ’t Hooft coupling. Nevertheless, the following

correspondence suggests that the dimensions are not renormalized. Let us first present the

map and then return to this point.

After staring at tables 3, 4 for a little while one can conjecture the mode-operator map

presented in table 5. The SU(4) quantum numbers match. Furthermore the SO(1, 1) spin

eigenvalues, given by ∆L − ∆R in the operator case, are consistent. Recall that a− corre-

sponds to a left-moving mode on the Minkowski boundary of AdS3, while a+ corresponds

to a right-moving mode. Also, λ
(−,k)
L is a left-handed complex Weyl spinor on the bound-

ary, as is its conjugate, λ̄
(+,k)
L . (Recall here that the ± indicates the SU(4) representation

— fundamental or antifundamental). Similarly, λR, λ̄R are right-handed on the boundary.

The most important “check” is the relation between the masses of the modes and the

dimensions of the operators, ∆ = ∆L + ∆R. The mass-dimension relations for AdSd+1

scalars, spinors, and vectors are the following:

scalars: ∆ =
1

2

(

d+
√

d2 + 4m2
)

, (4.40)

spinors: ∆ =
1

2
(d+ 2|m|), (4.41)

vectors: ∆ =
1

2

(

d+
√

(d− 2)2 + 4m2
)

. (4.42)

Setting d = 2 and plugging the masses of table 3 into the appropriate formulae, we indeed

find the dimensions of the proposed dual operators in all cases. This is no check for us, but
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Operator SUGRA mode

n = 0 O(0) = q†LqL a
(k=0)
−

n = 1 O(1) = q†LM
IqL a

(k=1)
−

QiO(1), Q†iO(1) λ̄
(+,k=0)
L , λ

(−,k=0)
L

QiQjO(1), Q†iQ†jO(1) φ(k=0), φ∗(k=0)

n ≥ 2 O(n) a
(k=n)
−

QiO(n), Q†iO(n) λ̄
(+,k=n−1)
L , λ

(−,k=n−1)
L

QiQjO(n), Q†iQ†jO(1) φ(k=n−1), φ∗(k=n−1)

QiQ
†jO(n) a(k=n−1)

QiQ
†jQ†kO(n), Q†iQjQkO(n) λ

(+,k=n−2)
R , λ̄

(−,k=n−2)
R

QiQjQ
†kQ†lO(n) a

(k=n−2)
+

Table 5: The defect mode-operator map.

rather a prediction of the correspondence. The operator dimensions in these formulae are to

be evaluated at strong ’t Hooft coupling, so this result implies that the classical dimensions

do not receive any corrections. This is surprising because, as we have emphasized, the

system does not possess superconformal symmetry and the defect operators are in ordinary

long multiplets of the supersymmetry algebra.

As discussed in [11], there is a probe “limit” where gs = 0 and all 7-branes are taken

coincident. Then superconformal symmetry is present, with supergroup SU(1, 1|4). In such

a system, the defect operators discussed above are in short multiplets of the symmetry

algebra and their dimensions are protected. However, this configuration is not in the

moduli space of F-theory solutions that we are considering. Even in the orientifold limit

of the system we study, the separation of the four D7/O7-planes and the compactness of

the transverse space break conformal symmetry. And certainly in the more general curved

case, there is no clear reason to expect the operator dimensions to be protected. It would

be quite interesting to investigate this issue further from the field theory side, but we leave

this for future work.

5. Localized R-symmetry anomaly from the chiral D3-brane zero-modes

In the previous section we presented evidence from the defect sector for the proposed

gauge/gravity duality. In the analysis of other AdS/dCFT systems, where the defect

branes are treated as probes, the bulk sector of the correspondence is simply equivalent to

the standard AdS/CFT correspondence. This is not the case here. After reduction on the

five-sphere, the bulk five-dimensional geometry is not AdS5, or even asymptotically AdS5.

Correspondingly, the boundary of that space, on which the dual field theory lives, is not

simply four-dimensional Minkowski space.

One of the most interesting consequences of having the field theory defined on the

curved background R1,1 × Σ2, is the presence of chiral zero-modes in the case of compact

Σ2. These are zero-modes of the D3-brane fermion that localize to the intersection of the

D3-branes with the 7-branes. They are the ξi
L and ξi

R of table 2. In contrast to the 3-7
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fermion qL, these modes transform under the SO(6) ≃ SU(4) R-symmetry group. The i is

an index in the 4. Since there is an unequal number of left- and right-handed modes — the

ξi
L transform in the antisymmetric tensor of O(Nc) while the ξi

R transform in the symmetric

tensor — there will be a global anomaly in the R-symmetry current that localizes to the

D3/D7-O7 intersection. From the perspective of the two-dimensional field theory, these

zero-modes will produce an SU(4) current algebra at level Nc. If the proposed duality is

correct, we must be able to see the manifestation of this anomaly on the supergravity side.

In the standard N = 4 SYM there is also an R-symmetry anomaly. The AdS5 gauge

field of N = 8 gauged supergravity is dual to the R-symmetry current. The global anomaly

in the field theory is reproduced in the supergravity by the nonzero gauge variation of

a five-dimensional Chern-Simons term that localizes to the boundary of AdS5 [3]. The

D3/D7-O7 intersection should be identified with the asymptotic boundary of the 7-branes

in the near-horizon geometry. What we need is a three-dimensional Chern-Simons term on

the AdS3 of the 7-brane worldvolume. Specifically, we would like to generate the required

term according the mechanism discussed in [34, 35], where the holographic interpretation

of anomalies in the AdS3/CFT2 context was well understood.

Let us now briefly review the essentials of this mechanism for the case of AdS3 × S5.

From the higher dimensional perspective, the SO(6) supergravity gauge field comes from

a nontrivial connection on the five-sphere. Let yI(θ) be such that

δIJy
IyJ = 1 , δIJdy

IdyJ = dΩ2
5 . (5.1)

Introduce one-forms on the AdS3 base AIJ = A IJ
m dxm, AIJ = −AJI , and consider the

coordinate transformation of the metric

ds2AdS3
+ dΩ2

5 → ds2AdS3
+
(

dyI −AIJyJ
)2

. (5.2)

One can show that AIJ plays the role of a spin connection. Then, with this metric,

the gravitational Chern-Simons term on AdS3 produces the gauge Chern-Simons term in

addition to the usual piece. Specifically, a term of the form

Sc.s. =
k

4π

∫

AdS3

ω3(A), with ω3(A) = tr4

(

AdA +
2

3
A3

)

, (5.3)

will produce an anomaly matching that of the chiral zero-modes provided that we identify

k with the level of the current algebra, Nc. Thus our task is to produce the gravitational

Chern-Simons term on AdS3, with coefficient Nc/4π, from the supergravity action for the

system.

There are two different places we might find such a term. The AdS5 Chern-Simons term

comes from the dimensional reduction of IIB supergravity around the AdS5 × S5 solution.

It could be that in order to obtain the required term we must expand IIB supergravity in

fluctuations around the solution of section 3, and then dimensionally reduce on both the

S5 and compact Σ2. This could perhaps be done. Fortunately there is another place where

we can find such a term, and the analysis is far simpler. There are bulk Chern-Simons

couplings in the 7-brane WZ action.
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Consider the WZ action for one set of 4D7 + O7’s. There is a term in the action,

surviving the α′ → 0 low energy limit, given by [36 – 41]

S4D7 + SO7 ⊃ −
∫

Σ8

G5 ∧
(

µD7Y (D7)
(0)
3 + µO7Y (O7)

(0)
3

)

. (5.4)

We are using standard anomaly descent notation, and we work in units where 4π2α′ = 1,

so that µD7 = 2π, µO7 = −4µD7, and

Y (D7) = ch(F ) ∧
√

Â(RTΣ)

Â(RNΣ)
, (5.5)

Y (O7) =

√

L̂(RTΣ/4)

L̂(RNΣ/4)
. (5.6)

Note, however, that we do not put the factor of 1/2 out in front of (5.4), as in [37] and [41],

for instance. This factor of 1/2 is appropriate for the anomaly inflow analysis because

one deals there with a manifestly electric/magnetic symmetric action. Here, on the other

hand, we only consider C0, C2, C4 to be the independent R-R forms, with C6, C8 being

obtained via Poincare duality. The term in Y (D7)
(0)
3 depending on the D7-brane gauge

field produced the important “topological mass” term in our analysis of the defect spectrum

in section 4. Here we focus on the gravitational terms; then ch(F ) simply gives3 a factor

of four from tracing the identity in the flavor gauge group. Using

Â(R) = 1 − 1

24
p1(R) + · · · , (5.7)

L̂(R/4) = 1 +
1

48
p1(R) + · · · , (5.8)

we have

S4D7 + SO7 ⊃ −8π

∫

G5 ∧
(

− 1

32
p1(RTΣ8) +

1

32
p1(RNΣ8)

)(0)

3

. (5.9)

Now let us evaluate this term in the supergravity background of section 3, but with

the SO(6) gauge field turned on (5.2). We’ll want to use G5 to integrate over S5, so all

three legs of p1(R)
(0)
3 should be taken along AdS3. In this case we can ignore the normal

bundle terms since the pullback of them to the brane will induce couplings to the D7-brane

scalar. Restricting p1(RTΣ)
(0)
3 to terms that involve only legs along AdS3, one finds

p1(RTΣ)
(0)
3

∣

∣

∣

∣

AdS

= − 1

8π2
tr(R2)

(0)
3

∣

∣

∣

∣

AdS

= − 1

8π2
(ω̃3(RAdS) + ω̃3(A)). (5.10)

The ω̃3(RAdS) term will contribute to the gravitational anomaly, but we aren’t interested

in this now. Note that the trace in ω̃3(A) is being taken in the vector of SO(6) (which is

why we are using the tilde):

ω̃3(A) = tr6

(

A∧ dA +
2

3
A3

)

. (5.11)

3Or a factor of eight if we are in the orientifold limit, since then the gauge group is SO(8). However in

that case, we use the Type I charge µ
(I)
D7 = 1

2
µ

(II)
D7 . The net factor is the same in either case.
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We will want to convert this to a trace in the 4. For an SO(6) bundle over a base, one

has the relation

ch2S(N) = p1(N) (5.12)

between the second Chern class of the spinor bundle and the first Pontrjagin class. This

implies that

tr4⊕4̄(R2) = tr6(R2), (5.13)

where R is the curvature of the bundle. (Recall that we are identifying A with the spin

connection, ω, on the bundle). Furthermore, for SU(4) one has

tr4⊕4̄(R
2) = 2tr4(R

2). (5.14)

Putting all of this together we find that

p1(RTΣ)
(0)
3

∣

∣

∣

∣

AdS

⊃ − 1

8π2
2tr4

(

A ∧ dA +
2

3
A3

)

≡ − 1

4π2
ω3(A), (5.15)

and thus

S4D7 + SO7 ⊃ −π
4
· 1

4π2

∫

AdS3×S5

G5 ∧ ω3(A). (5.16)

We should also worry about how G5 depends on the background gauge field. This is

discussed in [35], for example. One must take

G5 = Qπ3(e5 − χ5) + self-dual (5.17)

where e5 is the global angular form on the sphere bundle, satisfying
∫

S5 e5 = 1 along every

fiber, and π3 = volS5 . dχ5 = χ6 is the Euler class of the sphere bundle. The subtraction

of χ5 is required for closure, dG5 = 0, (away from the source). Now, χ5 has a nontrivial

gauge variation, δχ5 = dχ4, but both χ5 and χ4 would have all legs along the base AdS3

and in fact must simply vanish. Thus G5 will not contribute to the gauge variation and

we may simply take

G5 = (1 − ∗)16πα′2NcǫS5 → (1 − ∗)Nc

π3
ǫS5, (5.18)

where ǫS5 is the volume form on the unit five-sphere. Here we have converted the standard

result for the 5-form charge to units where 4π2α′ = 1.

Plugging (5.18) into (5.16) we obtain

S4D7 + SO7 ⊃ − 1

16π
· Nc

π3

∫

AdS3×S5

ǫS5 ∧ ω3(A)

= − Nc

16π

∫

AdS3

ω3(A). (5.19)
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Now recall that this is the result for one set of 4D7 +O7’s. Multiplying by 4 for four sets

and comparing with (5.3), we find

k = −Nc . (5.20)

The negative simply indicates that the number of right-handed minus left-handed Weyl

fermions transforming in the 4 of SO(6) is Nc. This is indeed what we found in the field

theory. We feel that this result gives more support to the proposed duality. However,

strictly speaking, it only shows that if the duality is correct, then there should be no such

AdS3 Chern-Simons term resulting from the dimensional reduction of the IIB supergravity

action on Σ2 × S5.

6. Discussion and open questions

In this paper we have presented evidence for the AdS/dCFT conjecture involving D3-

branes and 7-branes intersecting transversely in 1 + 1-dimensions. The correspondence for

this particular intersection is special for two reasons. Firstly, the localized modes on the

defect in the field theory are chiral. To our knowledge, defect mode-operator maps for

chiral intersections have not been explicitly worked out before. In section 4 we performed

the complete K-K reduction of D7-brane open string modes propagating on an AdS3 × S5

slice of the near-horizon geometry of the D3-branes. We then enumerated a class of defect

operators from the field theory that fit into primary multiplets of the supersymmetry alge-

bra, and exhibited a mode-operator map. Using the AdS3/CFT2 mass-dimension relations,

we found that the proposed correspondence implies a non-renormalization theorem for the

operators. This is quite interesting because, unlike other AdS/dCFT systems previously

studied, superconformal symmetry is completely broken here and there is no algebraic

argument protecting operator dimensions.

The second reason this system is special is that the 7-branes can not be treated as

probes — on either side of the correspondence. On the field theory side, the low energy

theory on the D3-branes had to be considered in the supergravity background of the 7-

branes. This led to interesting consequences such as zero-modes of D3-brane fields that

localize to the intersection. On the supergravity side, we considered the fully backreacted

geometry produced by the D3- and 7-branes, AdS3 ×w Σ2 × S5. The chiral zero-modes

cause a global anomaly in the SU(4) R-symmetry current that localizes to the intersection

in the field theory. In section 5 we found the supergravity dual signature of this — a term

in the effective action involving the SO(6) gauge field, whose gauge variation localized to

the AdS3 boundary.

The correspondences between defect modes and operators worked out here and in [6, 7]

are fascinating because they include a sector relating operators at the brane intersection

to modes of the DBI action in a curved background. This sector thus involves an open

string-open string duality and might be more amenable to an explicit proof of the duality.

As we discussed in [10], this system of D3- and 7-branes is T-dual to Nc D1-strings

in Type I on T 2. As in the D3- and 7-brane picture, this theory is not conformal. In the

– 22 –



J
H
E
P
0
8
(
2
0
0
8
)
0
0
6

IR the coupling constant becomes strong and there is conjectured to be a superconformal

fixed point corresponding to the Heterotic matrix string theory [42 – 45].

Going to the IR of the field theory corresponds to probing the interior of the supergrav-

ity solution. Thus one might have hoped that by zooming in on the intersection region of

the supergravity solution (3.1), one would find a conformal enhancement of supersymmetry

and a holographic dual description of the heterotic string. We have shown, however, that

the supergravity solution does not have any such enhancement. This apparent contradic-

tion is resolved by computing the following curvature invariant:

RMNPQR
MNPQ = 16λ−4e−2a(∂z∂z̄a)

2R
4

r4
+ 16λ−2e−a(∂z∂z̄a)

1

r2
+O(r0). (6.1)

Thus we see that near the intersection, where ∂za is large and r → 0, the curvature is

blowing up. Thus, as with other supergravity descriptions of the heterotic string [46 – 49],

α′ corrections will need to be taken into account and the geometry will be modified. One

might expect the modifications to produce an asymptotic AdS3 factor which would be dual

to the IR conformal fixed point that is expected to exist for the field theory. It would be

interesting to explore this further.

Finally, our results suggest that that there should be a non-renormalization theorem

given the exact matching we find between weak and strong coupling in spite of the lack of

conformal invariance. This also deserves further investigation.
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A. Supersymmetries of the supergravity background

In this section we construct the supersymmetries preserved by the global geometry pre-

sented in section 3. We show that there is no enhancement of supersymmetry as one goes

to the near-horizon region of the D3-branes.

We require that the supersymmetry variations of the dilatino and gravitino4 vanish in

the background,

δλ = −iΓ
M∂Mτ

(τ − τ̄)
B∗ǫ∗ = 0 , (A.1)

δψM =

(

∇M − ∂M (τ + τ̄)

4(τ − τ̄)

)

ǫ+
i

4 · 480
(

Γ ·G(5)
)

ΓM ǫ = 0 , (A.2)

4The extra factor of 1/4 in front of the G(5) term may appear nonstandard. We follow the conventions

of [50] for the normalization of the R-R form, which differs from the original work of Schwarz [51] by a

factor of four. The difference can be seen by comparing the IIB Einstein equation that results from varying

the pseudo-action of [50] to the Einsein equation in [51]. The conventions we chose were fixed by our

normalization of the charge in the five-form flux (3.3), which is standard in AdS/CFT.
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and look for solutions to these equations for the SUSY parameter ǫ. This spinor is complex

Weyl, given by ǫ = ǫ1 + iǫ2 where ǫ1,2 are Majorana-Weyl. Since the IIB supercharges are

right-handed in our conventions, ǫ will be left-handed — this is so that ǫQ is a Lorentz

scalar. It follows that the gravitino, ψM , is left-handed, while the dilatino, λ, is right-

handed. The covariant derivative in the gravitino variation may be written as ∇M − i
2QM ,

with QM the U(1) connection as in (2.7). The sign of the U(1) charge of ǫ is also dependent

on the chirality choice for the IIB supercharges. B is the d = 10 charge conjugation matrix,

satisfying BΓMB∗ = (ΓM )∗, BB∗ = 1.

A.1 Spin connection, gamma matrices, and ansatz for ǫ

Spacetime coordinates are xM = (xµ, z, z̄, r, θα); we will sometimes use xm = (xµ, r) for the

AdS3 coordinates. Corresponding tangent space directions are underlined. The nonzero

components of the vielbein associated with the metric (3.1) are

e
µ
ν = f−1/4δ

µ
ν , ezz = e

z̄
z̄ = λea/2f−1/4 ,

err = f1/4 , e
α

β = rf1/4e
(unit)α

β . (A.3)

Note that we take the flat metric in the z, z̄ directions to be ηzz = ηz̄z̄ = 0 and ηzz̄ = ηz̄z =

1/2. We find the nonzero components of the spin connection to be

ωνr,µ =
R4

r5f5/4
eνµ , ωz̄r,z =

R4

r5f5/4
ez̄z , ωzr,z̄ =

R4

r5f5/4
ezz̄ ,

ωz̄z,z =
1

4
∂za , ωzz̄,z̄ =

1

4
∂z̄a ,

ωβr,α = − 1

f
e
(unit)
βα , ωβγ,α = ω

(unit)
βγ,α . (A.4)

As we take the near horizon limit,

lim
r→0

R4

r5f5/4
=

1

R

(

1 +O(r/R)4
)

, lim
r→0

1

f
= O(r/R)4. (A.5)

In particular, ωβr,α → 0 while ωmn,p goes to the standard AdS3 result.

We take the following basis for the SO(1, 9) gamma matrices:

Γm = σ1 ⊗ 12 ⊗ τm ⊗ 14 , (m = 0, 1, r), (A.6)

Γ1+i = σ3 ⊗ σi ⊗ 12 ⊗ 14 , (i = 1, 2), (A.7)

Γ4+α = −σ2 ⊗ 12 ⊗ 12 ⊗ ρα , (α = 1, . . . 5), (A.8)

where the σi are Pauli matrices. The τm are the gamma matrices for SO(1, 2), which we

will think of as the structure group of the tangent bundle of the near horizon AdS3. They

may be taken as real; for instance, τ0 = iσ2, τ1 = σ1, τ r = σ3. The σi, for i = 1, 2, are

gamma matrices for the SO(2) structure group of TΣ2, and the ρα are gamma matrices for

the SO(5) structure group of TS5. They can not be taken purely real or purely imaginary.

We can have, say, ρ1, ρ3 real and ρ2, ρ4 imaginary.
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The 10-dimensional “γ5” is given by

Γ̄ =
∏

ΓM =

(

−σ3 ⊗ 18 0

0 σ3 ⊗ 18

)

, (A.9)

so that

L(10) =
1

2
(1 + Γ̄) =

(

R(2) 0

0 L(2)

)

⊗ 18 , (A.10)

where L(2), R(2) are the Weyl projectors for SO(2). Since AdS3 and S5 are maximally

symmetric spaces, the Killing spinors form a complete basis for general SO(1, 2) and SO(5)

spinors. Hence we make the following ansatz for ǫ:

ǫ =











0

ζaI
− (r, z, z̄)

ζaI
+ (r, z, z̄)

0











⊗ χa ⊗ ηI (sum over a, I). (A.11)

Here ζ± are one-component Weyl spinors of SO(2), I = 1, . . . , 4 labels the four Killing

spinors of S5, while a = l, l∞ labels the 2 Killing spinors of AdS3. They satisfy

∇mχa =
1

2R
τmχa , ∇(unit)

α ηI = ± i

2
ρ(unit)

α ηI . (A.12)

The two sign choices for η are related by charge conjugation, and “unit” refers to the unit

5-sphere. The labeling for the AdS killing spinors comes from the following. One Killing

spinor is an eigenvector of τ r and the other is only an eigenvector in the limits r → 0 or

r → ∞:

τ rχl = χl ,
limr→0 τ

rχl∞ = −χl∞

limr→∞ τ rχl∞ = χl∞

. (A.13)

The spinors ζaI
± should only depend on r, z, z̄ in order to respect the SO(1, 1) × SO(6)

isometry.

A.2 The dilatino equation

Let us rewrite δλ = 0 slightly. Taking the conjugate and then acting on the left with B∗

gives

−iB
∗(ΓM )∗B∂M τ̄

τ − τ̄
ǫ = 0 ⇒ ΓM∂M τ̄ ǫ = 0 . (A.14)

Using the fact that τ̄ = τ̄(z), we conclude that

1

λ
∂z τ̄(z)e

−a/2f(r)1/4Γzǫ = 0 , (A.15)

where Γz = Γ2 + iΓ3. The factor in front of Γzǫ does not vanish as we go near either the

D3-branes or the 7-branes (or their intersection). Hence we must strictly require that

Γzǫ = 0 , (A.16)
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regardless of any sort of near-horizon limit we may consider. Given the explicit form of

the gamma matrices, one easily finds that this implies ζaI
− = 0, and thus

ǫ =











0

0

ζaI
+ (r, z, z̄)

0











⊗ χa ⊗ ηI . (A.17)

This is just the usual projection for the 7-brane supergravity solution.

A.3 The gravitino equations

We will evaluate the equation for M = µ, r, z, z̄, α separately. First note that

Γ ·G(5) = 5!
4R4

r5f5/4
(Γ01234 + Γ56789) = 240i

4R4

r5f5/4











0 0 0 0

0 0 0 −1

1 0 0 0

0 0 0 0











⊗ 18 . (A.18)

The M = µ, r equations. We find these to be

ζaI
+

[

∂µ +
R4

2r5f5/4
eνµτ

νr − R4

2r5f5/4
eνµτ

ν

]

χa = 0 , (A.19)

(∂rζ
aI
+ )χa + ζaI

+

[

∂r −
R4

2r5f5/4
errτ

r

]

χa = 0 . (A.20)

Using the properties τ rχl = χl and χl = χl(r), one sees that the µ-equation is satisfied for

χl. The r-dependence of ζ lI
+ can also be determined such that the r-equation is satisfied.

As r/R → 0, ζ lI
+ → 1 and ∂rζ

lI
+ → 0. For χl∞ on the other hand, one is forced to set

ζ l∞I
+ = 0. However, in the near-horizon limit the equations become

[

∇(AdS)
m − 1

2R
τ (AdS)
m

]

(ζaI
+ χa) = 0 (near horizon), (A.21)

which are satisfied for both spinors by taking ζaI
+ constant.

The S5 equations. We find

ζaI
+

[

χa ⊗
(

∇(unit)
α − iR4

r4f
ρ(unit)

α

)

ηI − τ rχa ⊗
i

2f
ρ(unit)

α ηI

]

= 0 . (A.22)

For χl, the second and third terms can be added to give precisely the coefficient i/2. Hence

the equation is always satisfied for ζ lI
+ , due to the fact that ηI is a Killing spinor. We must

set ζ l∞I
+ = 0 for the general background. However, in the near horizon limit, the last term

vanishes while the first two become

ζaI
+ χa ⊗

(

∇(unit)
α − i

2
ρ(unit)

α

)

ηI = 0 (near horizon), (A.23)

so that this equation is also consistent with enhanced solutions.

– 26 –



J
H
E
P
0
8
(
2
0
0
8
)
0
0
6

The M = z, z̄ equations. The M = z equation leads to two equations, due to the fact

that ωz̄r,zΓ
z̄r in the covariant derivative and (Γ ·G(5))Γz both act as off-diagonal matrices

on the column vector (0, 0, ζ, 0)T . We find
(

∂z −
1

4
∂za+

1

4
∂z log τ2

)

ζaI
+ = 0 , (A.24)

R4

r5f5/4
ez̄zζ

aI
+ (τ rχa − χa) = 0 . (A.25)

For the M = z̄ equation, both of the off-diagonal terms that produced the extra equation

above vanish when acting on ǫ, and we just have
(

∂z̄ +
1

4
∂z̄a−

1

4
∂z̄ log τ2

)

ζaI
+ = 0 . (A.26)

This equation combined with the first of the z equations fixes the z, z̄ dependence of ζaI
+ .

The solution has the form

ζaI
+ (r, z, z̄) = A(r)

(

g(z)

ḡ(z̄)

)1/4

, (A.27)

where g(z) is the holomorphic function appearing in the metric. This z, z̄ dependence is

the standard result for the killing spinors of the 7-brane supergravity solution.

The second z equation, on the other hand, is clearly only solved for ζ lI
+ . Furthermore,

in the near horizon limit it becomes

r

2R2
λea/2ζaI

+ (τ rχa − χa) = 0 . (A.28)

In all of the other equations, the constraint that ζ l∞I
+ = 0 vanished like O(r/R)4, whereas

here it only vanishes like O(r/R). Hence, while the AdS3 and S5 equations are consistent

with the enhancement of supersymmetry in the near horizon, the Σ2 equations are not.

We conclude that there is no enhancement.

The supersymmetries preserved in the global solution are of the form

ǫ =











0

0

ζ lI
+ (r, z, z̄)

0











⊗ χl ⊗ ηI , (A.29)

where ζ lI
+ is given by (A.27) and χl, ηI satisfy

∇(AdS)
m χl = 1

2Rτ
(AdS)
m χl

τ rχl = χl

, ∇(unit)
α ηI =

i

2
ρ(unit)

α ηI . (A.30)

This corresponds to 4 complex, or 8 real supercharges. Given the identification of τ r with

the “γ5” of the 1 + 1-dimensional boundary and the isometries of S5 with an SO(6) R-

symmetry group, we conclude that ǫ transforms in the (1/2,4)+ of SO(1, 1)×SO(6)×SO(2).

This implies that the preserved supercharges, Q, transform in the (−1/2, 4̄)−, which is

consistent with our analysis of the field theory side [10].
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B. The D7-brane fermion action

We begin with the action

Sferm.
D7 =

iTD7

2

∫

d8ξeφ
√−gtr

(

ȳ(1 − Γ̃D7)(e
−φ/4Γ̂mD̆m − ∆̆)y

)

. (B.1)

Let us review what these various quantities are, following [25]. In this section we denote

by m,n, . . . and a, b, . . . worldvolume/tangent space indices along the brane, and M,N, . . .,

A,B, . . . denote spacetime/tangent space indices in the bulk. We also use i, j, . . . and

i, j, . . . to denote spacetime and tangent space indices transverse to the brane. We have

y =

(

y1

y2

)

, (B.2)

where y1, y2 are each 32-component d = 10 spinors, satisfying Majorana and Weyl con-

straints, both of the same chirality. Also,

Γ̂A =

(

ΓA 0

0 ΓA

)

= I2 ⊗ ΓA , ˆ̄Γ =

(

Γ̄ 0

0 −Γ̄

)

= σ3 ⊗ Γ̄ , (B.3)

where ΓA are the d = 10 gamma matrices and Γ̄ the generalized “γ5.” Γ̃D7 is given by

Γ̃D7 = −iσ2 ⊗ 1

8!
√−g ε

m1···m8Γm1···m8 , (B.4)

where ε0···7 = 1 and Γm1···m8 = Γ[m1
· · ·Γm8].

1
2(1 − Γ̃D7) is a kappa symmetry projection

operator that will remove half of the degrees of freedom. Finally, D̆m and ∆̆ are given by

D̆m = 12 ⊗ D̂(0)
m + σ1 ⊗ Ŵm , ∆̆ = 12 ⊗ ∆̂(1) + σ1 ⊗ ∆̂(2) , (B.5)

where

D̂
(0)
(1,2)M = ∂M +

1

4

(

ωAB,M +
1

4
τAB,M

)

ΓAB ≡ D̃M , (B.6)

Ŵ(1,2)M =
1

8

(

∓e3φ/4G
(1)
A ΓA ∓ e−φ/4

2 · 5! G
(5)
ABCDEΓABCDE

)

eφ/4ΓM , (B.7)

∆̂
(1)
(1,2) =

1

2
e−φ/4ΓM∂Mφ , (B.8)

∆̂
(2)
(1,2) = ±1

2
e3φ/4G

(1)
A ΓA . (B.9)

The subscript (1, 2) is correlated with the sign. If the operator acts on y1 the top sign is

chosen, if it acts on y2 the bottom sign is chosen.

One important step has already been taken relative to the formulae presented in [25].

Their results are given in string frame and we have converted to Einstein frame5 using

g
(s)
MN = eφ/2g

(e)
MN . In terms of the vielbeins and inverse vielbeins, e

(s)A
M = eφ/4e

(e)A
M and

5Note, however, that the R-R forms in [25] were already in Einstein frame.
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E
(s)M
A = e−φ/4E

(e)M
A . Thus, for instance, one has Γ(s)M = e−φ/4Γ(e)M and G

(1)(s)
A =

e−φ/4G
(1)(e)
A . The projector Γ̃D7 is unchanged; the transformation of the vielbeins in

Γm1···m8 cancels the factor coming from
√−g in the denominator. Finally, it can be shown

that the spin connection gets modified: ω
(s)
AB,M = ω

(e)
AB,M + 1

4τ
(e)
AB,M , where τAB,M is defined

through

τAB,C =
1

2
(χA,BC + χB,CA − χC,AB), (B.10)

with χA,BC = −χA,CB given by

dφ ∧ eA =
1

2
χA,BCe

B ∧ eC . (B.11)

Now let us simplify this action. We have

1

8!
√−g ε

m1···m8Γm1···m8 =
ea1

m1
· · · ea8

m8

8!
√−g εm1···m8Γa1···a8 = Γ0···7 = iΓ̄(8) , (B.12)

where we’ve defined Γ̄(8) ≡ iΓ0···7 which anticommutes with all of the Γa and squares

to one. The dilaton and axion only depend on coordinates transverse to the brane, so

ΓM∂Mφ = Γi∂iφ and ΓMG
(1)
M = ΓiG

(1)
i . In particular, when we compute ΓMŴM , we use

ΓmΓiΓm = −8Γi. Using the near-horizon form of (A.18) we find

G
(5)
ABCDEΓmΓABCDEΓm =

8 · 5!
R

(−Γ01234 + Γ567689). (B.13)

Finally, consider the covariant derivative D̃m, given in (B.6). From the expression (A.4)

for the spin connection ωAB,M , we see that when M is an AdS3 or S5 coordinate, so

are A,B. Hence ωAB,mΓAB = ωab,mΓab. Using the definitions (B.10),(B.11), we find

ΓmτAB,mΓAB = 16Γi∂iφ. Therefore

ΓmD̃m = Γm∇m + Γi∂iφ , (B.14)

where ∇m is the standard covariant derivative on the brane worldvolume.

Putting these results together, one obtains the following form for the Dirac operator

in (B.1):

(1 − Γ̃D7)(e
−φ

4 Γ̂mD̆m − ∆̆) = e
−φ

4

(

A + C+ (A− C−)(−iΓ̄(8))

(A− C−)(iΓ̄(8)) A + C+

)

≡ M , (B.15)

where

A = Γm∇m +
1

2R
(−Γ01234 + Γ56789)(iΓ̄(8)) , (B.16)

C± =
1

2
Γi
[

±∂iφ+ eφG
(1)
i (iΓ̄(8))

]

. (B.17)

– 29 –



J
H
E
P
0
8
(
2
0
0
8
)
0
0
6

Note that A anticommutes with Γ̄(8) while C± commute with it. We would like to make a

unitary change of variables that diagonalizes M. Consider ỹ = Uy where

U =
1√
2

(

Γ̄(8) −iΓ̄(8)

Γ̄(8) iΓ̄(8)

)

. (B.18)

One can then show that ȳMy = ¯̃yM̃ỹ, with M̃ = −UM̃U † given by

M̃ = 2e−φ/4

(

AL̂(8) − C+1+ C−Γ̄(8) 0

0 AR̂(8) − C+1− C−Γ̄(8)

)

, (B.19)

where L̂(8) = 1
2 (1+Γ̄(8)) and R̂(8) = 1

2 (1−Γ̄(8)). The hats are a reminder that these matrices

are still 32 × 32. Note that the original y1,2 were both left-handed, L(10)y1,2 = y1,2, and

Majorana, y1,2 = CȳT
1,2, where C is the d = 10 charge conjugation matrix. The new ỹ1,2

are related to the old by ỹ1 = 1√
2
Γ̄(8)(y1 − iy2) and ỹ2 = 1√

2
Γ̄(8)(y1 + iy2). It is easy to

show that the ỹ satisfy the following Weyl and Majorana conditions:

L(10)ỹ1,2 = ỹ1,2 ,
ỹ1 = C ¯̃yT

2

ỹ2 = C ¯̃yT
1

. (B.20)

Now let us dimensionally reduce from d = 10 to d = 8. We take the ΓA to have the form

Γa = 12 ⊗ γa , a = 0, 1, 4, . . . , 9 , Γ2,3 = −σ1,2 ⊗ γ̄ . (B.21)

These definitions are consistent with those in the previous section. The γa are SO(1, 7)

gamma matrices and γ̄ = i
∏

γa. Appropriate definitions of the charge conjugation matri-

ces in d = 10 and d = 8 exist such that C = σ1 ⊗ c, and also c = cT . Therefore we let

ỹ1,2 =
1√
2

(

Ψ1,2

χ1,2

)

, (B.22)

where

L(8)Ψ1,2 = Ψ1,2

R(8)χ1,2 = χ1,2
and

Ψ1,2 = cχ̄T
2,1

χ1,2 = cΨ̄T
2,1

. (B.23)

Plugging these expressions in we eventually find

eφ/4 ¯̃yM̃ỹ = Ψ̄1

[

/∇ +
i

2R
(−iγ014 + γ5···9)γ̄

]

L(8)Ψ1 +

+χ̄2

[

/∇ +
i

2R
(iγ014 + γ5···9)γ̄

]

R(8)χ2 +

+2E z
z

[

−∂zφΨ̄2χ2 + ieφG(1)
z Ψ̄1χ1

]

+

+2E
z̄

z̄

[

∂z̄φχ̄1Ψ1 + ieφG
(1)
z̄ χ̄2Ψ2

]

. (B.24)

At this point it is clear that χ1 and Ψ2 (which are charge conjugates of each other) are

non-dynamical fields. They represent the extra degrees of freedom that are supposed to be
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projected out by the κ-projection operator 1
2(1 − Γ̃D7). However, it appears that, rather

than getting projected out, they are serving as Lagrange multipliers. What is the constraint

they are imposing? From the charge conjugation relations it follows that Ψ̄2χ2 = −Ψ̄1χ1

and χ̄2Ψ2 = −χ̄1Ψ1. Therefore the last two terms may be written as

2E z
z

[

∂zφ+ ieφG(1)
z

]

Ψ̄1χ1 + 2E
z̄

z̄

[

∂z̄φ− ieφG
(1)
z̄

]

χ̄1Ψ1 . (B.25)

Observe that

∂zφ+ ieφG(1)
z = −∂z log τ2 +

i

τ2
∂zτ1 =

i

τ2
∂zτ , (B.26)

∂z̄φ− ieφG
(1)
z̄ = −∂z̄ log τ2 −

i

τ2
∂z̄τ1 = − i

τ2
∂z̄ τ̄ , (B.27)

where τ = τ1 + iτ2 is the axidilaton. But these are precisely the quantities that must

vanish in order for the supergravity background to preserve supersymmetry and satisfy the

equations of motion. Hence the κ-projection simply requires that we work in a consistent

background. Then these terms are indeed removed from the action.

The terms that remain in the action are those involving only Ψ1, or its conjugate

χ2. In fact, by setting the χ2 term equal to its transpose, using the charge conjugation

relations (B.23), and carefully bringing the resulting charge conjugation matrices together,

one can show that the two terms are equivalent. The action finally boils down to

Sferm.
D7 = iTD7

∫

d8ξe3φ/4√−gtr
(

Ψ̄1[ /∇ +
i

2R
(−iγ014 + γ5···9)γ̄]L(8)Ψ1

)

. (B.28)

Now we must rescale the metric as discussed above equation (4.2). This sends
√−g →

R8√−g and /∇ → 1
R
/∇, producing an overall factor of R7. In the conventions of [25],

2πα′ = 1. Therefore, TD7R
4 = Nc/(8π

4) is the factor we obtained in front of the bosonic

action. Hence it would appear that we have an unwanted factor of R3e3φ/4. We would like

to make the rescaling

Ψ1 = R−3/2e−3φ/8Ψ (B.29)

and then we would have precisely the result quoted in the text (4.9). However, we need a

good reason to do so, since e−3φ/8 diverges when evaluated on the brane, and α′ in R is

being taken to zero. For this we turn to supersymmetry.

We can obtain the supersymmetry variations of the D7-brane fields by dimensionally

reducing the d = 10 SYM relations to eight dimensions. The d = 10 variations are

δAM = −iζ̄ΓMλ , δλ =
1

2
FMNΓMNζ , (B.30)

where λ, ζ are Majorana-Weyl. We use the gamma matrix decomposition (B.21), and write

λ = (Ψ,Ψc)T , ζ = (ξ, ξc)T , where Ψ and ξ are left-handed in d = 8, Ψc = cΨ̄T and similarly

for ξc. Here we will restrict to the U(1) case, since it will be sufficient for our purposes.

Carrying out the reduction in a curved background leads one to

δAm = −i(ξ̄γmΨ − Ψ̄γmξ),

δAz = iezz ξ̄
cΨ , δAz̄ = −iez̄z̄ ξ̄Ψ

c ,

δΨ =
1

2
Fmnγ

mnξ + 2E z
z /∂Azξ

c . (B.31)
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We expect that the D7-brane action in the supergravity background preserves half

of these supersymmetries. It is clear, however, that these would be the variations in

string frame, where the dilaton sits out in front of all terms with equal weight. To de-

termine how SUSY acts in Einstein frame, we must Weyl-rescale the variations according

to G
(s)
MN = eφ/2R2Ḡ

(e)
MN . There are factors of vielbeins explicitly, and implicitly in the

gamma matrices. Furthermore, observe that the superalgebra is schematically of the form

{Q, Q̄} = ΓM∂M . Since ΓM → e−φ/4RΓM , it follows that the supercharges must be

rescaled: Q(s) = e−φ/8R−1/2Q(e). The supercharges appear on the left hand side of the

variations according to δϕ ≡ [Qξ + Q̄ξ̄, ϕ]. After plugging these factors in, the variations

are brought back to canonical form by the field redefinitions

A
(s)
M = A

(e)
M , Ψ(s) = R−3/2e−3φ/8Ψ(e) . (B.32)

There is an overall scaling factor that is not fixed by this argument, but is fixed by the fact

that the gauge field action is already well defined in Einstein frame and leads to finite energy

fluctuations in the Maldacena limit. Hence supersymmetry requires the rescaling (B.29).

Finite energy gauge fluctuations are mapped by SUSY to finite energy fermionic fluctua-

tions in the Einstein variable Ψ(e) ≡ Ψ.
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[33] M.A. Rubin and C.R. Ordoñez, Eigenvalues and degeneracies for n-dimensional tensor

spherical harmonics, J. Math. Phys. 25 (1984) 2888 [UTTG-10-83].

[34] P. Kraus and F. Larsen, Holographic gravitational anomalies, JHEP 01 (2006) 022

[hep-th/0508218].

[35] J. Hansen and P. Kraus, Generating charge from diffeomorphisms, JHEP 12 (2006) 009

[hep-th/0606230].

[36] M.B. Green, J.A. Harvey and G.W. Moore, I-brane inflow and anomalous couplings on

D-branes, Class. and Quant. Grav. 14 (1997) 47 [hep-th/9605033].

[37] Y.-K.E. Cheung and Z. Yin, Anomalies, branes and currents, Nucl. Phys. B 517 (1998) 69

[hep-th/9710206].

[38] R. Minasian and G.W. Moore, K-theory and Ramond-Ramond charge, JHEP 11 (1997) 002

[hep-th/9710230].

[39] K. Dasgupta, D.P. Jatkar and S. Mukhi, Gravitational couplings and Z2 orientifolds, Nucl.

Phys. B 523 (1998) 465 [hep-th/9707224].
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